Growth cartilage expression of growth hormone/insulin-like growth factor I axis in spontaneous and growth hormone induced catch-up growth.
نویسندگان
چکیده
INTRODUCTION Catch-up growth following the cessation of a growth inhibiting cause occurs in humans and animals. Although its underlying regulatory mechanisms are not well understood, current hypothesis confer an increasing importance to local factors intrinsic to the long bones' growth plate (GP). AIM The present study was designed to analyze the growth-hormone (GH)-insulin-like growth factor I (IGF-I) axis in the epiphyseal cartilage of young rats exhibiting catch-up growth as well as to evaluate the effect of GH treatment on this process. MATERIAL AND METHODS Female Sprague-Dawley rats were randomly grouped: controls (group C), 50% diet restriction for 3 days+refeeding (group CR); 50% diet restriction for 3 days+refeeding & GH treatment (group CRGH). Analysis of GH receptor (GHR), IGF-I, IGF-I receptor (IGF-IR) and IGF binding protein 5 (IGFBP5) expressions by real-time PCR was performed in tibial growth plates extracted at the time of catch-up growth, identified by osseous front advance greater than that of C animals. RESULTS In the absence of GH treatment, catch-up growth was associated with increased IGF-I and IGFBP5 mRNA levels, without changes in GHR or IGF-IR. GH treatment maintained the overexpression of IGF-I mRNA and induced an important increase in IGF-IR expression. CONCLUSIONS Catch-up growth that happens after diet restriction might be related with a dual stimulating local effect of IGF-I in growth plate resulting from overexpression and increased bioavailability of IGF-I. GH treatment further enhanced expression of IGF-IR which likely resulted in a potentiation of local IGF-I actions. These findings point out to an important role of growth cartilage GH/IGF-I axis regulation in a rat model of catch-up growth.
منابع مشابه
Production and functional characterization of human insulin-like growth factor 1
Insulin-like growth factor 1 (IGF-1) is a polypeptide hormone produced mainly by the liver in response to the endocrine growth hormone (GH) stimulus. This protein is involved in a wide range of cellular functions, including cellular differentiation, transformation, apoptosis suppression, migration and cell-cycle progression and other metabolic processes. In the current study, human heart cDNA w...
متن کاملThe Effect of Eight Weeks Resistance Training With and Without Vascular Occlusion on Physical Fitness Indexes, Growth Hormone, and Insulin-like Growth Factor in Male Judokas
Purpose: The present study was conducted to investigate the effect of 8 weeks resistance training with and without vascular occlusion on physical fitness indexes, growth hormone, and Insulin-like growth factor 1 (IGF-1) in male judokas. Methods: In this quasi-experimental study, 20 male judokas were divided into two groups: 1. Traditional resistance training along with judo training with...
متن کاملEffect of Six Months of Aerobic Exercise on Serum Levels of Insulin, Growth Hormone and Insulin-Like Growth Hormone 1 in Sedentary Obese Women
ABSTRACT Background and Objectives: Inactivity, obesity and hormone disorders can lead to various diseases in obese and non-athletic individuals. The objective of this study was to investigate effects of six months of aerobic exercise on serum levels of insulin, growth hormone (GH) and insulin-like growth hormone 1 (IGF-1) in sedent...
متن کاملANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...
متن کاملHormonal regulation of postnatal growth in children born small for gestational age.
Children born small for gestational age (SGA) are at high risk of permanent short stature, with approximately 10% continuing to have stature below the third centile throughout childhood and adolescence and into adulthood. The mechanisms involved in catch-up growth, and those that prevent catch-up growth, are still unknown. To date, no reliable anthropometric or endocrine parameter predictive of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Growth hormone & IGF research : official journal of the Growth Hormone Research Society and the International IGF Research Society
دوره 22 3-4 شماره
صفحات -
تاریخ انتشار 2012